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Abstract: We study null 1/4 BPS deformations of flat domain wall solutions (NDDW)

in N = 2, d = 5 gauged supergravity with hypermultiplets and vector multiplets coupled.

These are uncharged time-dependent configurations and contain as special case, 1/2 su-

persymmetric flat domain walls (DW), as well as 1/2 BPS null solutions of the ungauged

supergravity. Combining our analysis with the classification method initiated by Gauntlett

et al., we prove that all the possible deformations of the DW have origin in the hyper-

multiplet sector or/and are null. Here, we classify all the null deformations: we show

that they naturally organize themselves into “gauging” (v-deformation) and “non gaug-

ing” (u-deformation). They have different properties: only in presence of v-deformation is

the solution supported by a time-dependent scalar potential. Furthermore we show that

the number of possible deformations equals the number of matter multiplets coupled. We

discuss the general procedure for constructing explicit solutions, stressing the crucial role

taken by the integrability conditions of the scalars as spacetime functions. Two analyt-

ical solutions are presented. Finally, we comment on the holographic applications of the

NDDW, in relation to the recently proposed time-dependent AdS/CFT.
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1. Introduction

Studying time-dependent solutions in (Super)Gravity and String theory is an interesting

and difficult task. Indeed our capacity of producing efficient cosmological models and

generally describing our world relies on our control over time evolution. String theory,

as a consistent theory of quantum gravity, should be able to provide a satisfactory an-

swer to this and other outstanding related problems, such as the resolution of spacetime

singularities. Unfortunately, it is very hard to keep the stability of such solutions under

control, especially against quantum corrections. One of the crucial points is that a generic

time-dependent solution is not supersymmetric, thus does not enjoy non renormalization

properties associated to BPS configurations. Up to now the use of this property is the

main way we have to study non perturbative phenomena.
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In this work we take the modest approach of considering an interesting class of time-

dependent BPS configurations in N = 2 d = 5 gauged supergravity with matter couplings.

In doing so, we are in part inspired by [1 – 3],1 where null deformations of AdS5 × S5 are

considered. These authors propose an extension of the AdS/CFT correspondence to such

background, that is the near horizon limit of a null deformed stack of D3-branes (the null

deformation of intersecting brane configurations has been recently considered in [5]). Such

an extension is appealing because may allow one to inspect toy spacetime cosmological

singularities via holography. In [1 – 3] it is argued that the dual theory corresponds to

N = 4 super Yang-Mills theory (SYM) with time-dependent sources turned on. This

picture has been supported and further investigated in [6]. An interesting property of the

background analyzed in [1 – 3] is that the dilaton and, consequently, the gauge coupling

of the dual theory are time-dependent (through a lightcone coordinate). Furthermore, as

only the AdS5 part is affected by the deformation, such solutions can be studied in full

generality in the effective 5d (gauged) supergravity.

In our paper we investigate configurations of the form

ds2 = β2(x+, r)
(
−2k2(x+)dx+dx− + H(x+, x−, xi, r)(dx+)2 + (dxi)2 + dr2

)
.

We show that such configurations preserve 1/4-supersymmetry and include the null de-

formed AdS5 space of [1 – 3] as special 1/2 BPS subcases. However, the above metric

describes also another interesting 1/2-supersymmetric subclass - it contains flat domain

wall solutions. This class of solutions has received a lot of attention mainly due to the role

in the AdS/CFT correspondence, [4]. As solutions of gauged supergravity these are conjec-

tured to be dual to the Renormalization Group (RG) flows of field theory couplings [7 – 13].

Domain walls are also a key ingredient of Brane world constructions [14 – 19]. More re-

cently, in four dimensions, these solitons have been used as a laboratory for understanding

mirror symmetry in flux/generalized geometry compactifications [20 – 22] and to explore

transitions between the different cosmological vacua of the Landscape [23].

It is desirable to “combine” the two deformations of AdS we consider and verify whether

and/or how the gauge/gravity correspondence applies to the resulting background. For

these reasons, the study of “generalized” domain wall solutions remains an interesting area

of study. Very recently non-supersymmetric charged domain walls have been investigated

in [24] while BPS gyratons have been discussed in [25]. In both cases such configurations

have been studied in the presence of vector multiplets coupling only.

In this work we shall consider all the matter couplings that are relevant for construct-

ing domain walls. As shown in [26] the inclusion of hypermultiplets is crucial to have BPS

domain walls interpolating between two AdS vacua and consequently to embed the domain

wall solution of [27] (FGPW) in the N = 2 gauged supergravity, as holographic dual to an

RG flow from an N = 4 to an N = 1 SYM. In [28] it has been shown that curved domain

walls can be obtained only with hypermultiplets coupled. Currently there is a renewed in-

terest in having a more systematical understanding of BPS solutions with hypermultiplets.

1In [3] null deformations of the near horizon limit of the general Dp-branes are considered and their

holographic properties are studied. For p 6= 3, they are the null generalization of the (p + 2)-dimensional

domain walls of [4].
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The full classification in N = 2 ungauged supergravity has been achieved in four and five

dimensions in [29, 30]. Some steps towards this goal in the more complicated gauged case

had been previously performed in five dimensions [31 – 33].

The configurations we present here are the first example of BPS time-dependent solu-

tions in gauged supergravity with hypermultiplet coupled.

As an additional motivation, we would like to mention that the configurations we

consider may be seen as the closest supersymmetry-preserving analogue of time-dependent

solutions of [34, 35] describing Brane collision.

The organization of the paper is as follows. In order to fix the notation and be self-

contained we present in section 2 the basic ingredients of the supergravity theory we are

dealing with and we describe the main feature of (flat) domain wall solutions in N = 2

d = 5 gauged supergravity.

Section 3 constitutes the main part of this paper and is devoted to the derivation and

discussion of the BPS equations related to the metric above. Such an analysis is made

in comparison with the original domain wall case which, using a non orthodox English

terminology, we will refer to in the text as the “undeformed” configuration. We shall

illustrate how the class of solitons under consideration admits a dual interpretation as null

deformation of domain walls or deformation of a plane wave due to the “gauging”. Taking

the first point of view, we show that the null deformation naturally organizes itself into

the contribution coming from the gauging, and another associated to the null solutions in

the ungauged supergravity.

In section 4 the analysis of section 3 is given concrete applications and two explicit

examples are constructed.

We finally collect our conclusions and propose possible developments in section 5.

All details of calculation that have not been given in the main text are presented in

the appendix A and B. In appendix C we describe the parametrization of the coset space

that appears in section 4.1. In appendix D we argue how “adapted coordinates” can be

used to derive some insights into the possible solutions.

2. Domain wall in N = 2 d = 5 gauged supergravity

This section is devoted mainly to review known facts on domain wall solution. Furthermore

we remind here the basic ingredient of the supergravity theory we use, giving the formulae

we use in our calculation.

2.1 Five-dimensional, N = 2 gauged supergravity

We start by recalling some of the most important features of five-dimensional, N = 2

gauged supergravity theories. Further technical details can be found in the original refer-

ences [36 – 40].

The matter multiplets that can be coupled to 5D, N = 2 supergravity are vector,

tensor and hypermultiplets: the scalar ϕ of theory could a priori sit in any of these (or

even be a combination of different types of scalars).
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The (nV +nT ) scalar fields of nV vector and nT tensor multiplets parameterize a “very

special” real manifold MVS, i.e., an (nV + nT )-dimensional hypersurface of an auxiliary

(nV + nT + 1)-dimensional space spanned by coordinates hĨ (Ĩ = 0, 1, . . . , nV + nT + 1):

MVS = {hĨ ∈ R
(nV +nT +1) : CĨ J̃K̃hĨhJ̃hK̃ = 1}, (2.1)

where the constants CĨJ̃K̃ appear in a Chern-Simons-type coupling of the Lagrangian. The

embedding coordinates hĨ have a natural splitting,

hĨ = (hI , hM ), (I = 0, 1, . . . , nV ), (M = 1, . . . , nT ), (2.2)

where the hI are related to the sub-geometry of the nV vector multiplets, and the hM refer

to the nT tensor multiplets. On MVS, the hĨ become functions of the physical scalar fields,

φx (x = 1, . . . , nV + nT ). The metric on the very special manifold is determined via the

equations

gxy = hĨ
x hyĨ , hĨ

x ≡ −
√

3
2 ∂xhĨ , hĨ ≡ CĨ J̃K̃hJ̃hK̃ , hĨx ≡

√
3
2 ∂xhĨ ,

hĨhJ̃ + hĨ
x gxy hyJ̃ = δĨ

J̃
, hĨhĨ = 1, hĨhĨx = 0. (2.3)

The scalars qX (X = 1, . . . 4nH) of nH hypermultiplets, on the other hand, take their

values in a quaternionic-Kähler manifold MQ [41], i.e., a manifold of real dimension 4nH

with holonomy group contained in SU(2)×USp(2nH). We denote the vielbein on this man-

ifold by f iA
X , where i = 1, 2 and A = 1, . . . , 2nH refer to an adapted SU(2) × USp(2nH)

decomposition of the tangent space. The hypercomplex structure is (−2) times the curva-

ture of the SU(2) part of the holonomy group,2 denoted as RrZX (r = 1, 2, 3), so that the

quaternionic identity reads

Rr
XY RsY Z = −1

4 δrs δX
Z − 1

2 εrst Rt
X

Z . (2.4)

Besides these scalar fields, the bosonic sector of the matter multiplets also contains nT

tensor fields BM
µν (M = 1, . . . , nT ) from the nT tensor multiplets and nV vector fields from

the nV vector multiplets. Including the graviphoton, we thus have a total of (nV +1) vector

fields, AI
µ (I = 0, 1, . . . , nV ), which can be used to gauge up to (nV + 1) isometries of the

quaternionic-Kähler manifold MQ (provided such isometries exist). These symmetries act

on the vector-tensor multiplets by a representation tIJ̃
K̃ , where in the pure vector multiplet

sector tIJ
K = fIJ

K are the structure constants, and the other components also satisfy some

restrictions [38, 42, 40]. The transformations should leave the defining condition in (2.1)

invariant, hence

tI(J̃
M̃CK̃L̃)M̃ = 0. (2.5)

The very special Kähler target space then has Killing vectors

Kx
I (φ) = −

√
3
2tIJ̃

K̃hx
K̃

hJ̃ . (2.6)

2In fact, the proportionality factor includes the Planck mass and the metric, which are implicit here.
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There may be more Killing vectors, but these are the ones that are gauged using the gauge

vectors in the vector multiplets.

The quaternionic Killing vectors KX
I (q) that generate the isometries on MQ can be

expressed in terms of the derivatives of SU(2) triplets of Killing prepotentials P r
I (q) (r =

1, 2, 3) via

DXP r
I = Rr

XY KY
I , ⇔

{
KY

I = −4
3RrY XDXP r

I

DXP r
I = −εrstRs

XY DY P t
I ,

(2.7)

where DX denotes the SU(2) covariant derivative, which contains an SU(2) connection ωr
X

with curvature Rr
XY :

DXP r = ∂XP r + 2 εrstωs
XP t, Rr

XY = 2 ∂[Xωr
Y ] + 2 εrstωs

Xωt
Y . (2.8)

The prepotentials satisfy the constraint

1

2
Rr

XY KX
I KY

J − εrstP s
I P t

J +
1

2
fIJ

KP r
K = 0, (2.9)

where fIJ
K are the structure constants of the gauge group.

In the following, we will frequently switch between the above vector notation for SU(2)-

valued quantities such as P r
I , and the usual (2 × 2) matrix notation,

PIi
j ≡ iσri

jP r
I . (2.10)

An important difference in geometrical significance between the very special Killing

vectors Kx
I (φ) in (2.6) and the quaternionic ones KX

I (q) in (2.7), is that the former do not

arise as derivatives of Killing prepotentials, because there is no natural symplectic structure

on the real manifold MVS that could define a moment map.3

Turning on only the metric and the scalars, the general Lagrangian of such a gauged

supergravity theory is

e−1L =
1

2
R − 1

2
gxy∂µφx∂µφy − 1

2
gXY ∂µqX∂µqY − g2V(φ, q), (2.11)

whereas the supersymmetry transformation laws of the fermions are given by

δψµi = ∇µεi − ωµi
jεj −

i√
6

g γµP j
i εj, (2.12)

δλx
i = − i

2
γµ(∂µφx)εi − g Pi

jxεj + g T xεi, (2.13)

δζA =
i

2
f iA

X γµ(∂µqX)εi − gN iAεi. (2.14)

3The moment maps are related to the fact that the isometries should preserve complex structures.

Therefore, they are absent in the real manifold. In 4 dimensions, the scalar manifold of the vector multiplets

does have a complex structure. Hence, in that case this sector would also have a moment map structure [43].

This suggests that in four dimensions the same comparison may go along different lines.
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Here, ψi
µ, λx

i , ζA are the gravitini, gaugini (tensorini) and hyperini, respectively, g denotes

the gauge coupling, the SU(2) connection ωµ is defined as ωµi
j = (∂µqX)ωXi

j , and

P r = hI(φ)P r
I (q), (2.15)

P r
x = −

√

3

2
∂xP r = hI

xP r
I , P rx = gxyP r

y , (2.16)

N iA =

√
6

4
f iA

X (q)hI(φ)KX
I (q), (2.17)

T x =

√
6

4
hI(φ)Kx

I (φ). (2.18)

As a general fact in supergravity, the potential is given by the sum of “squares of the

fermionic shifts” (the scalar expressions in the above transformations of the fermions):

V = −4P rP r + 2P r
xP r

y gxy + 2N iAN jBεijCAB + 2T xT ygxy, (2.19)

where CAB is the (antisymmetric) symplectic metric of USp(2nH).

Using the explicit form of the Killing vector, (2.6), in (2.18), one finds that this expres-

sion vanishes if the transformation matrix t involves only vector multiplets. This is clear

because then tIJ
K = fIJ

K , hence antisymmetric. Therefore, the shift T x in the above ex-

pressions is non-vanishing only if there are charged tensor multiplets in the theory.4 Since

T x appears in (2.13) with the unit matrix in su(2) space, it must vanish on a BPS-domain

wall solution for compatibility with the spinor projector (see [26, footnote 8] and [44]). Fur-

thermore, unlike the shifts P r
x and N iA, T x is a purely “D-type” term, in the sense that

it is completely unrelated to derivatives of the moment map P r. Thus, for BPS-domain

walls in 5D, N = 2 supergravity (and in fake supergravity as well [28]), non-trivial tensor

multiplets can not play an important rôle, and we can limit our remaining discussion to

the case nT = 0, i.e., to supergravity coupled to vector and/or hypermultiplets only. This

also means that the index Ĩ simply becomes the index I in all previous equations, and the

index M disappears.

Before reviewing the BPS domain wall solutions, let us present the integrability condi-

tions of the Gravitini variation (2.12). Following [32], all the information contained in (2.12)

for uncharged BPS configurations in presence of matter, can be cast in the compact form:

(
1

4
Ωcd

abγabδi
j − iRr

cd(σr)i
j − 2g√

6
γ[cDd]P

r(σr)i
j +

g2

2
W 2γcd

)

εj = 0, (2.20)

where DµP r ≡ ∂µϕΛDΛP r and Rr
µν ≡ ∂µqX∂νq

Y Rr
XY are the pull-back of the SU(2)-

covariant derivative of the moment map and of the SU(2)-curvature, respectively. W is

the superpotential, P rP r ≡ 3
2W 2 (the normalization is chosen for convenience). Impos-

ing (2.20) together with the BPS conditions of the matter field, is sufficient to ensure the

Einstein equation for the metric, for time-like BPS configurations [32] (i.e. when the vec-

tor bilinear constructed by the covariantly constant spinor V µ ≡ 1/2ε̄iγµεi is time-like),

4In five dimensions, tensor multiplets that are not charged under some gauge group are equivalent to

vector multiplets. We always assume that all uncharged tensor multiplets are converted to vector multiplets.
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or more precisely, when there is no light-like projector on the covariantly constant spinor

(γ∓ε = 0). We will see in section 3, how the equations of motion impose extra-condition

over the metric in the light-like case (V µVµ = 0).5

2.2 BPS-domain walls in supergravity

Now we will remind to the reader of some known facts about domain wall configurations,

pointing out some novel features along the way. This subject has been extensively studied in

the literature, mainly as an application/extention of the AdS/CFT correspondence and as

phenomenological model with large extra-dimensions (Brane world). The relevance of such

configuration justified the derivation of an “effective” supergravity approach [12] known as

Fake supergravity [45], valid for any space-time dimensions. The explicit relation of this

powerful tool for constructing domain wall solutions, with the full-fledged N = 2 D = 5

gauged supergravity was first uncovered in [28], and further explored in [46].6 Remarkably,

the same first order formalism (extended to include dS-brane in [48, 49]) applies also

to Friedmann-Robertson-Walker cosmology [50], motivating the derivation of the domain

wall/Cosmology correspondence [46, 51].

We will review the subject from a different prospective to usual (cfr. [28]). The normal

procedure is to start with a domain wall ansatz for the metric,

ds2 = e2U(r)gµ̄ν̄(x) dxµ̄ dxν̄ + dr2, (2.21)

and assume that the scalar fields depend only on the fifth dimension r (we indicate with

a bar the indices running over the remaining four dimensions). By definition of a domain

wall, the four dimensional metric gµ̄ν̄ of the wall has constant curvature that BPS equations

fixed to be non positive. When this is negative (AdS4) the domain wall is said to be curve

or AdS-sliced, while is called flat or Minkowski-sliced in case of zero curvature.

We shall instead begin by requiring that the scalar fields depending only on one space-

time spatial coordinate, that for convenience we take as fifth coordinate. This is equivalent

to assume that the metric is a warped product of a radial coordinate times a generic four

dimensional metric. So any a priori assumption is made about the form of gµ̄ν̄ in (2.21),7 a

part the fact that it does not dependent on r. We will show of this weaker requirement is

sufficient to identify a domain wall solution. Following the analysis of [32], further extended

in [52], we decompose the derivative of the quaternionic scalars as:

∂5q
X = MKX + 2vrD

XP r. (2.22)

As a consequence, the hyperini equation (2.14) reduces to
[√

3

2
igδi

j + γ5Mδi
j − ivrγ5(σr)i

j

]

εj = 0. (2.23)

5Actually, a subtlety that has never been put in evidence is that a domain wall solution is always

light-like, although in a trivial way. This point will be clarified in section 3.1.
6The relation between Fake supergravity and N = 4, d = 5 gauged supergravity has been studied in [47].
7Our study at this stage can not exclude the existence of different supersymmetric solutions than the

domain walls, where the scalars depend only on one coordinate that does not factorize in the metric. Such

possibility could be interesting in the contest of holography.
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Now, the other crucial physical requirement of the solution enters the game, i.e. it must be

uncharged. Under this condition, the equations of motion for the gauge field reduces to

KX∂aq
Y gXY = 0, (2.24)

which immediately gives M = 0. Thus (2.23) becomes

γ5εi = αr(σr)i
jεj , (2.25)

where the phase αr (αrαr = 1) is given by αr ≡
√

2
3

1
gvr.

The analysis of the gaugini equation (2.13) yields to an analogous result. By imposing

∂aφ
x = δ5

a∂5φ
x, one gets

(

∂5φ
xγ5δi

j + 2gP xr(σr)i
j
)

εj = 0. (2.26)

The above equation is easily seen to be equivalent to (2.25) plus

∂xP r =
αr∂5φ

x

√
6g

. (2.27)

Hence the first order equations for the scalars of hypermultiplets and vector multiplets can

be written in a unified framework as:

∂5ϕ
Λ = 2

√

3

2
gαrDΛP r, Λ = 1, . . . , nV + 4nH , (2.28)

where

ϕΛ ≡
{

qX , Λ = 1, . . . , 4nH = X

φx, Λ = 4nH + 1, . . . , 4nH + nV = x + 4nH

,

DΛP r

{

DXP r, Λ = 1, . . . , 4nH = X

∂xP r, Λ = 4nH + 1, . . . , 4nH + nV = x + 4nH

,

However, let us emphasize that the vector multiplet scalar sector is constrained by a

stronger condition, due to (2.27), i.e. ∂xP r//αr.8

We remember that, up to now, we did not assume any guess for the metric g of the

four dimensional slice orthogonal to r. Its form will be determined by the integrability

conditions of the gravitini. Taking in account that, from (2.28) we find,

DaP
r = ∂aϕ

ΛDΛP r =

= 3

√

3

2
g

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

δ5
aα

r, γ ≡ −αsQs, (2.29)

equation (2.20) becomes

{

1/2Ωcd
abγab − g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)
(
δ5
c + δ5

d

)
− W 2

]

γcd

}

εi = 0, (2.30)

8This property forces the domain wall supported by vector multiplets to be flat, as first observed in [28].
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where (2.25) is crucial to reduce the above expression to a combination of gamma matrices.

Now, differently from the case we will discuss in the next section, no other projection

condition can be enforced because we are looking for 1/2 BPS solution. Hence, (2.30) must

be trivial and the curvature “diagonal”, i.e.

Ωcd
ab = 2g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)
(
δ5
c + δ5

d

)
− W 2

]

δ[a
c δ

b]
d . (2.31)

Using

Ẇ ≡ ∂rW =

√

2

3
∂rϕ

ΛDΛP sQs

= −3g

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

γ, (2.32)

(2.31) can be cast as

Ωcd
ab = 2g2

[

−Ẇ

gγ

(
δ5
c + δ5

d

)
− W 2

]

δ[a
c δ

b]
d . (2.33)

The above expression is sufficient to show that the four dimensional slice is a space of non

positive constant curvature. First we observe that for a warped metric of the form (2.21),

the curvature can be written as

Ωcd
āb̄ = Ω̄āb̄

cd − 2(Ȧ)2δ[ā
c δ

b̄]
d (2.34)

Ωcd
ā5 = −2(Ä + (Ȧ)2)δ[ā

c δ
5]
d (2.35)

where Ω̄āb̄ = 1/2e−2AΩ̄āb̄
c̄d̄

ec̄ ∧ ed̄ is the intrinsic curvature associated to the metric g. The

comparison between (2.34) and (2.33) implies that Ω̄āb̄ is proportional to eā ∧ eb̄ via a

function of r only, that can be reabsorbed in the warp-factor. In practice this means that

A can be taken such that (

g2W 2 − (Ȧ)2
)

e2A =
1

L2
, (2.36)

where R̄ = − 12
L2 the constant scalar curvature of g. It remains to demonstrate that L ∈ R,

i.e. is the length of AdS4 (that reduce to Minkowski for L = 0). From the comparison

between (2.35) and (2.33) it follows

Ä + (Ȧ)2 = g2

(

Ẇ

gγ
+ W 2

)

. (2.37)

Using (2.36) we conclude that Ȧ = gγW , hence (g2W 2−(Ȧ)2), L2 ≥ 0, because 0 ≤ γ2 ≤ 1.

Let us summarize what we have presented in this section. It has been shown that the

well known domain wall solutions are the unique BPS solutions that can be written as

in (2.21) with the scalars depending only on r.

In other words we have displayed that assigning (2.28) is sufficient to get a domain

wall. In this way we can establish a one-to-one correspondence between the projector (2.25)

and domain wall solutions.
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In the next section we will study a supersymmetric deformation of these solutions. In

order to do so we will focus on the flat domain walls (DW), i.e. γ2 = 1. We conclude

by observing, for future reference, that in this case the metric (2.21) can be conveniently

expressed as a conformally flat metric

ds2 = β2(x5)ηµνdxµdxν, (2.38)

where x5 is related to r by the change of coordinate dr = β(x5)dx5, with β(x5) = eA(r).

The BPS equations become

β̇

β2
= gγW, (2.39)

ϕ̇Λ = −3gβγ∂ΛW, (2.40)

the dot now indicating the derivative with respect to the new coordinate x5.

3. Null deformation

Now we want to consider together with (2.25) the projector

γ0εi = ±γ1εi. (3.1)

As will be shown clearly below, the resulting configuration can be seen as the generalization

of the light-like deformation of AdS5×S5 studied in [1 – 3], from an effective five dimensional

point of view.9 For convenience, we name it as “Null-deformed domain wall”, or shortly

NDDW, while we will refer to the non deformed flat domain wall simply as DW.

It is convenient to change our frame from the ordinary Minkowski to the lightcone one.

We define E± ≡ E0±E1
√

2
, in order to have η±∓ = −1. The (3.1) now reads γ∓εi = 0.

It is easy to verify that the two conditions over the covariant spinor are consistent. This

point will be discussed in section 3.1 from the prospective of the classification method [53].

We will argue that, to some extent, the NDDW is the most general non static deformation

of the DW.

The introduction of (3.1) reduces the amount of supersymmetry from 1/2 to 1/4 and,

as a consequence the DW metric (2.38) is deformed. In order to study such deformation,

we will consider the following metric (see the appendix for more details)

ds2 = β2(x+, r)
(
−2k2(x+)dx+dx− + H(x+, x−, xi, r)(dx+)2 + dr2 + (dxi)2

)
. (3.2)

The above metric represents the most general light-like deformation of (2.38), where the

Minkowski slice has been replaced by a generic PP wave and the conformal factor β admits

a dependence on lightcone coordinate x+. It reduces to the one studied in [1] for β and r

taken to be respectively the warp-factor and the radial coordinate of AdS5 in the “Brinkman

form” [1, eq.(5)] respectively.

9However, as for the non deformed DW, the uplifting to ten dimensions of our 5d model, is more involved

than in the vacuum case, and is in general unknown.
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In order to attack the problem, we follow the same strategy as in the previous section.

By first we discuss the BPS equation for the scalars. Then, we use it to determine the

curvature (to be compared with the one resulting from the ansatz) via the integrability

condition (2.20).

First of all, we observe that, including both the gaugini and hyperini equa-

tions (2.13), (2.14) a term of the form γa∂aϕ
Λ, the projector (2.25) allows the presence of

a non zero ∂±ϕΛ component, which does not interfere with ∂5ϕ
Λ, remaining formally the

same as for the DW. This means that equations (2.23) and (2.26) are untouched.

Similarly to (2.22), we decompose ∂±qX in (again the e.o.m imposes KX∂µqY gXY = 0)

∂±qX = vsD
XP s + uX , (3.3)

where uX is orthogonal to KX and DXP s. This decomposition is not only convenient

for practical reasons, but also the two terms play different roles in the BPS equations

(cfr. (3.6)). This reflects their different origin: while vsD
XP s is associated to the gauging,

uX is related to the ungauged theory.

Taking into account that we want to study 1/4-BPS configurations, it must be vr//αr.

Indeed introducing another SU(2) direction is equivalent to add an extra projector condition

like (2.25), as can be seen from the gravitini integrability condition (GIC) (2.20).

The analysis of the gaugini equations goes along the same lines.

We can write the kinetic term of the scalars as

∂aq
X =

(

2

√

3

2
gvαsD

XP s + uX

)

δ±a + 2

√

3

2
gαsD

XP sδ5
a,

∂aφ
x =

(

2

√

3

2
gwαs∂

xP s + ux

)

δ±a + 2

√

3

2
gαs∂

xP sδ5
a. (3.4)

As in hypermultiplet case, the vector ux is orthogonal to ∂xP s (similar considerations hold),

while the normalization of v and w is chosen for convenience to have ∂±qX = v∂5q
X + uX

and ∂±φx = w∂5φ
x + ux respectively.

At first sight, the “democratic” behavior of the scalars appearing in the DW case,

eq. (2.28), (which is related to the success of the Fake supergravity approach) seems to be

spoiled, because a priori v and w can be generic (unrelated) functions of the moduli space.

Following the same procedure as in the previous section, we can specialize the in-

tegrability condition (2.20) to the NDDW configuration, computing DaP
r and making

use of (2.25). The exact expression is not so illuminating and is presented in the ap-

pendix, (A.12).

What is instead crucial, is that now the curvature Ωab (as well as the Ricci tensor)

acquires “off-diagonal” terms (i.e. not proportional to δ[c
aδd]

b) related to the deformation.

Again this is a consequence of the new projection condition (3.1). The detail of this

computation may be found in the appendix, equations (A.13)–(A.16).

Let us remark that the curvature is completely determined by the integrality condition

up to the Ω±b̃
∓ã component. This feature is common to all the BPS solutions associated
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to the projector (3.1). Indeed the component Ω±b̃
∓ã always cancels out because it enters

the integrability conditions multiplied by γ∓, that is zero on εi.
10

Comparing the result we get from the GIC with the curvature computed starting by

the ansatz (3.2), we obtain the BPS equations:

β̇

β2
= gγW, γ2 ≡ (−αsQs)2 = 1, (3.5)

1

β
(

β̇

β2
)′ = −3g2

(
v ∂XW∂XW + w ∂xW∂xW

)
, (3.6)

∂i∂−H = ∂2
−H = ∂−Ḣ = 0. (3.7)

In force of eq. (3.7) H may be decomposed as:

H(x+, x−, xi, r) = H̃(x+, xi, r) + H−(x+)x−. (3.8)

Let us note that the relation between the derivative with respect to r and the superpoten-

tial, (3.5), stays the same as in the DW case. In addition, we find again that γ2 = 1. This is

not surprising, in fact as this is our input (as announced at the beginning, we restrict our-

selves to null deformation of the flat domain wall metric (2.38)) rather than a requirement of

supersymmetry. Indeed, generalizing the metric ansatz (3.2), it is possible to study curved

domain wall deformation without changing the integrability conditions (A.13)–(A.16). An

other interesting remark relates to the absence of uΛ in the BPS equations (3.5)–(3.7).

This is a first indication of the intrinsics difference between u and v, w-deformations.

However, the relation between uΛ and the metric comes from the Einstein equation

((±±) ≡ (01) component, to be precise). As per usual, and as explained above, the first-

order equations of light-like BPS solution [53, 32] are not sufficient to solve all the equations

of motion and fix the ansatz completely. Explicitly we find

R±
∓ = −9g2

(
v ∂XW∂XW + w ∂xW∂xW

)
− uΛuΛ

=
3

β

(

D′ − D
2kk′ + 1/2∂−H

k2
+

1

2
gγWḢ

)

+
1

2β2

(
∑

i

∂2
i H + Ḧ

)

, (3.9)

where in parallel with (3.5) we introduce D ≡ β′

β2 . This equation is crucial to relate the

function H, characterizing the metric, to the scalars and the warp-factor, determining the

solution.

This is the only extra requirement coming from the equations of motion, (apart from

KX∂aq
Y gXY = 0, used since the beginning) that otherwise are identically satisfied. Indeed,

it is easy to verify that the equations of motion for the scalars reduce to the one for the

undeformed configuration, and, as in that case, are identically satisfied. This result is

somewhat expected because the null contribution to the kinetic term is traceless thus does

not enter in the laplacian (for the details of the calculation we refer the reader to the

appendix B).

10This does not happen for the other component of Ω∓a because of the symmetry of the curvature.

Furthermore we remind that, due to (3.1), γ±∓ ≡ 1/2[γ±, γ∓] (that is not equal to γ±γ∓) is not zero on ε

but proportional to the identity.
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The last non trivial constraint comes from the integrability conditions for the scalars

(SIC). Taking a unifying notation

∂µϕΛ = β
[(
−3gγv(Λ)∂

ΛW + uΛ
)
δ+
µ − 3gγ∂ΛWδr

µ

]
, (3.10)

where

v(Λ) ≡
{

v, Λ = 1, . . . , 4nH = X

w, Λ = 4nH + 1, . . . , 4nH + nV = x + 4nH

,

the integrability condition (∂+∂r − ∂r∂−)ϕΛ = 0 implies

(
−3g2Wv(Λ) + 9g2∂ΣW∂Σv(Λ) + 3gγD

)
∂ΛW + gγWuΛ =

9g2
(
v(Σ) − v(Λ)

)
∂ΣW∂Σ∂ΛW + 3gγ

(
∂ΣW∂ΣuΛ − uΣ∂Σ∂ΛW

)
, (3.11)

This expression will be discussed in section 3.2, and will be explicitly solved for the simple

models studied in section 4.

3.1 Domain wall and classification

In this section we discuss a point that is in some sense tangential to the main stream of

the paper. We would like to shed some light on the relation between the DW solutions

(and their deformations) and the classification methods developed in [53], and successfully

applied to supergravity theories with 8 supercharges in [54 – 61, 60, 62, 63, 29, 64, 30]. In

particular we want to understand within the framework of the classification, in which class

the solutions we are studying fall in.11 Although some facts and observations we report

apply to diverse dimensions, we focus our discussion (as in the rest of the work) on the 5d

supergravity.

Let us emphasize however that DW solutions in 5d gauged supergravity are only par-

tially cover by the classification method. Indeed no classification in gauged supergravity

with hypermultiplet couplings currently exists.

Moreover is intrinsically difficult to identify the DW and all the solutions coming from

the gauging, i.e. that exist only in gauged supergravity (in the ungauged limit, g → 0

reduces the vacuum). This occurs because the classification method is essentially based

on the ungauged theory. Indeed, the starting point of any classification is to assume the

existence of a covariantly constant spinor ε. This can be divided into two classes that are

time-like or light-like. Such division implies the adoption of BPS solutions of ungauged

supergravity as a preferred base. To see this let us recall that a solution is said time-like

or light-like if the Killing vector V µ constructed by the covariantly constant spinor ε,

V µ ≡ 1/2ε̄iγµεi, (3.12)

enjoys the former or the latter properties, respectively. Following [53], the modulus of V µ

can be related via Fierz identities to the scalar quantities f ≡ 2iε̄iεi. A crucial consequence

11While this paper was being written, [24] and [25] appear. It contains some overlap with the discussion

in this section.
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of ε being covariantly constant is that V µ turns out to be Killing. Together with the Fierz

identity

V aγaεi = ifεi, (3.13)

it implies the existence of preferred frame, in which a projector is associated to each BPS

solution:

γ0ε = iε, if the (spinor, and by extension the) solution is time-like; (3.14)

γ−ε = 0, if the solution is light-like. (3.15)

The remarkable result [53] is that these are the only projectors possible in the ungauged

supergravity12 (as a consequence the BPS solutions are or one half or maximally supersym-

metric). In this sense the classification method labels the configurations by their origins in

the ungauged theory. This obviously is not all the story: the different solutions in the two

classes are identified by the allowed Base spaces.

It worth stressing that the projector (2.25) associated to the domain wall can never

be reduced to (3.14) or (3.15). Indeed, in the ungauged theory limit g → 0 the algebraic

condition (2.25) disappears and the domain wall reduces to maximally supersymmetric

Minkowski vacuum. In the classification contest the additional projector arises checking

(the assumption of) the existence of covariantly constant spinor. Indeed in the minimal

gauged supergravity [54] and in the gauged supergravity with vector multiplets coupled [62]

the solutions are generically 1/4 BPS. From this perspective, the BPS solutions of gauged

supergravity are seen as deformations of the BPS configurations of the ungauged gravity.

Such a deformation is the result of the partial supersymmetry breaking introduced by the

gauging.

However, this point of view makes it difficult to characterized solutions like domain

walls, which are interesting in its own and, as we remarked, are exclusively a product of

the gauging. It should be noted that domain walls were not recognized in the classification

up to now.

This gap can easily be filled by using the “identification” between the DW and the

projector (2.25). Indeed (2.25) is only compatible with the null projection (3.15) obtained

in section 2.2. Assuming instead (3.14), the anti-commuting algebra of γ-matrices is not

realized on ε. For the same reason a projector of the form γ1εi = θr(σr)i
jεj (θrθr = 1) is

not compatible with either (3.14) or (3.15). This means that the coordinate transversal to

the wall can not be “mixed” with time.

From these simple observations we learn that the DW can only belong to the class of

light-like BPS solutions. At the same time this implies something stronger: given a domain

wall solutions the only supersymmetry preserving (uncharged)deformations admitted are

null (the ones we consider in this work) or/and have their origin in the coupling with

hypermultiplets.

12The full supersymmetry preserving solutions fit in the above classification but are characterized by

the existence of another covariantly constant spinor η satisfying the complementary projector, respectively

γ0η = −η and γ±η = 0. Moreover, these are the unique configurations belonging to the both classes.
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This statement reflects a peculiar point of view with respect the classification, in which

the contribution of the ungauged theory are seen as perturbation of the gauged solution.

This is more useful when we are interested in the properties of the latter.

Let us conclude by observing that the question over the existence of other deformations

than the ones studied in this paper seems to be strictly related to the existence of 1/8 BPS

solutions.

3.2 Analyzing the deformation

In section 3 we derived the BPS equation characterizing the NDDW. These equations

will now be analyzed in order to understand the “physics” behind them and construct

explicit solutions (see section 4). We began by reminding the reader that a NDDW can be

interpret in two ways. Indeed, as the name indicates can be seen as a supersymmetric null

deformation of a DW or as gauging deformations of an uncharged half BPS plane wave

configuration of the ungauged supergravity theory. These “mother” classes of solutions can

be derived considering the projector (2.25) and (3.1) separately. Their BPS equations are

obtained from the generic case by taking the limit uΛ, v(Λ) → 0 and g → 0, respectively.13

In the latter case, the kinetic term of the scalars is simple given by uΛ.

This fact points out the “physical” difference between the null deformation controlled

by uΛ and v(Λ). We will refer to these as u-deformations and v-deformations, respectively.

The u-deformations are ungauged deformations, in the sense that uΛ identifies the

scalar profile and (up to some freedom in the function H, see section 4) the metric of the

(plane wave) solution in g → 0 limit. The v-deformations are instead a product of the

gauging, and are the unique ones related to the potential. It follows from eq. (3.6), that

the potential can be time-dependent (via x+) only in presence of v-deformations. This

makes it very appealing to construct these kind of solutions.

However, it seems very hard to obtain explicit solutions in the most general set-up

of section 3, at least analytically. The major difficulty to overcome is the integrability

condition of the scalars (3.11).

Indeed the recipe for constructing a solution consists of:

1. assigning the matter sector and the gauging, in practice giving a prepotential W ;

2. obtaining from the SIC (3.11) admissible v(Λ) and uΛ as function of the moduli;

3. integrating the scalar BPS equations (3.10) and determining β, v(Λ) and uΛ as func-

tions of spacetime (x+ and r);

4. deriving H from (3.9).

For the first step, we note that the orthogonality between uΛ, the Killing vector KX

and the SU(2)-covariant derivative of prepotential DΛP s requires (for uΛ 6= 0) nV , nH 6= 1.

13It is worth to note that no (plane wave) solutions associated to (3.1) and supported by a non trivial

potential (W 6= constant) exist. This can be easily check by computing the equation of motion for the

scalar (B.7) for the x+ direction.
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The second step is certainly the most delicate. The SIC can be interpreted as an

implicit definition of v(Λ) and uΛ that otherwise do not have an well-known geometric

origin as W .

The difficulties of points 3 and 4 are of technical nature, and at worst can be faced

using numerical methods.

The plan above will be applied in the next section, considering u-deformation only. In

this special case, more can be said on the solution. First of all, (3.6) means that W = γ
g

β̇
β2 ,

γ = ±1, is a function of r only. Moreover (3.6) tells us that β′

β2 = D(x+) or, in other words,

that the warp-factor decomposes as follows

β−1 = f(r) + g(x+). (3.16)

Before concluding let us add a comment on the SIC (3.11). Due to the orthogonality

between uΛ and ∂ΛW it actually corresponds to two distinct equations. That in the uΛ

direction can be interpret as the definition of uΛ (and v(Λ)), or in other words is the

consistency condition between the gauging and the ungauged solutions. That in the ∂ΛW

direction determines D, i.e. the dependence on time (x+) of the warp-factor β. Taking a

constructive point of view, the first equation determines whether, for each of the possible

direction orthogonal to ∂ΛW , is possible to adjust the modulus of uΛ in order to find a

solution. In the examples we present in section 4 this occurs. Furthermore it turns out

that uΛuΛ is not completely determined by the SIC.

4. Explicit solutions

In this section we present the explicit realization of a NDDW for the simplest models we

can consider. For this purpose we restrict ourselves to u-deformation.

Indeed, as discussed above, we need at least nV ≥ 2 or/and nH ≥ 2. For example it is

not possible to realize the orthogonality of ∂ΛW and uΛ in a trivial way, i.e. taking one lying

in the Hypergeometry and other in the Very Special geometry. Indeed, the integrability

condition of the scalars (3.11), would force the solution to reduces to the plane way of the

ungauged theory or, alternatively to a flat domain wall.14 In that follows, we will focus

over the cases: a) (nV , nH) = (0, 2); b) (nV , nH) = (2, 0). In particular we consider the

group manifolds Sp(2,1)
Sp(2)×Sp(1) and SO(2,1)

SO(2) .

The solutions we obtain are peculiar because the warp-factor β turns out to be a

function of r only, remaining untouched by the deformation. This feature depends only on

the special gauging chosen in order to guarantee the existence of analytic solutions. Why

this happens is clarified in the appendix D by means of the adopted coordinates [28].

14This result confirms, in accordance with the expectation, that the ungauged matter sector (the one

where ∂W = 0) decouples from the gauged matter sector and do not contribute to the solution. In other

words given a domain wall supported by nV vector multiplets and nH hypermultiplets, an arbitrary number

of constant matter multiplets can always be added.
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4.1 A nH = 2 solution: the
Sp(2,1)

Sp(2)×Sp(1) model.

Details on the geometry and coset parametrization of the coset space Sp(2,1)
Sp(2)×Sp(1) are given

in the appendix C. The space is characterized by the following metric

ds2 = (dh)2 + (B1)2 + (B2)2 + (B3)2 + 2e−h
[
(de0)2 + (de1)2 + (de2)2 + (de3)2

]
. (4.1)

In order to get a simple configuration, we consider as isometry to be gauged a trans-

lation. Because the metric (4.1) is cyclic in the br, we take

K = ∂b1 . (4.2)

In order to compute the prepotential P r, we follow the same strategy as in [65]. Indeed,

for practical purposes, is convenient to use another definition of P r different than (2.7).

A Killing vector preserves the connection ωr and Kähler two forms Jr (1
2νJr ≡ Rr, with

ν = −1 in our paper) only modulo an SU(2) rotation. Denoting by LΛ a Lie derivative

with respect to kΛ, we have

LΛωs = −1
2∇rs

Λ, LΛJr = εrstrs
ΛJ t, (4.3)

where rs
Λ is known as an SU(2) compensator. The SU(2)-bundle of a quaternionic manifold

is non-trivial and therefore it is impossible to get rid of the compensator rs
Λ by a redefinition

of the SU(2) connections.15 The moment map can be expressed in terms of the triplet of

connections ωs and the compensator rs
Λ in the following way [66]:

Ps
Λ = 1

2rs
Λ + ιΛωs. (4.4)

For this Killing vector the compensator turns up to be zero, and the moment map P r,

following (4.4), is

P r = ιKwr = −1

2
e−hδ1r. (4.5)

Accordingly with the BPS condition, we can choose as u any vector field in Sp(2,1)
Sp(2)×Sp(1)

orthogonal to K and ιKJr, for example:

u = f (−∂e0 + er∂br) . (4.6)

The f at this stage is arbitrary function of the scalar manifold, but the integrability condi-

tion of the scalars will fix its dependence on the “running” ones (the others are irrelevant for

determining the final solution). Considering only u-deformations, the SIC (3.11) becomes

3D∂XW + WuX = 3
(
∂Y W∂Y uX − uY ∂Y ∂XW

)
. (4.7)

As the superpotential W is a function of the Cartan coordinate h (with respect to which

the metric (4.1) is by definition diagonal) only, the above equation implies

D = 0 = β′ =⇒ β = β(r),

∂h ln f = −1

3
=⇒ f = CF (q)e−h/3, ∂hF (q) = 0. (4.8)

15This is in contrast with N = 2 rigid supersymmetry, since hyper-Kähler manifolds have a trivial SU(2)

bundle, and therefore no compensator.
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The constant C has been introduced for convenience. Without loosing of generality we

can restrict F (q) to be a function of e0 and br only. As we will see, F takes the role of

generating function of the solution. Indeed, eq. (3.10) gives

e0′ = −βf = −F, (4.9)

br ′ = βf = F. (4.10)

The above equations imply

br = −ere0 + Cr, Cr = constant,

and

dx+ = − de0

F (e0,−ere0 + Cr)
, (4.11)

which can always be integrated and inverted piecewise for a smooth F (e0, br).16

Let us remark that the feature ∂+β = 0 is not generic but a consequence of the simple

model we have chosen. This property allows us to integrate immediately eq. (3.5):

h =
3

2
ln

[
2gγ√

6C
(r − r0)

]

, (4.12)

β =
1

C eh/3 =
1

C

[
2gγ√

6C
(r − r0)

]1/2

. (4.13)

Before discussing the x+-dependence of the solution, let us remark that at r = r0 the

solution has a singularity. We may take r0 = 0 and chose γ in order to have the solution

defined for r > 0. The singularity exists even when the deformation is absent. Indeed the

superpotential

W =
1√
6

[
2gγ√
6C

r

]−3/2

,

that is related to the curvature by the BPS equations, explodes for r = 0. This is not

surprising because this happens for all DWs obtained by the gauging of a translation and

for this specific model the radial dependence is unaffected by the deformation.17

As the warp-factor is independent of the deformation, u and the dependence on x+

enter the metric only through the function H, describing the “wave”. As explained in the

previous sections, H is determined by (3.9) using the decomposition in (3.8):

3

2

X

r
+ Ẋ + Y = Br−3/2, (4.14)

where X ≡ ˙̃H, Y ≡ ∑

i ∂
2
i H̃ and B ≡ −4

[
2gγ√
6C

]−3/2
F 2, B < 0. This equation can be

easily integrated in r under the assumption (not required by supersymmetry) ∂i
˙̃H = 0,

16However, for a generic F the solution will develop a singularity of similar kind as in [1, 2].
17For this specific gauging more can be said about the stringy origin of the solution. In Calabi-Yau

compactification the Cartan modulus is associated to the Volume V of the compact space (to be precise

V ∝ eh) [26]. In this specific case the singularity occurs when the CY shrinks to zero and the supergravity

approximation is breaking down.
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that implies Y = Y (x+). We get

H = −2ρr−1/2 + 2Br1/2 − 1

5
Y r2 + σ + H−x−, (4.15)

with ρ and H− generic functions of x+, ρ = ρ(x+), H− = H−(x+), and σ = σ(x+, xi) such

that
∑

i ∂2
i σ = Y .

Let us observe that H, measuring the light-like deformation of the metric, is only

partially controlled by the shape of F (via B), measuring the deformation of the scalar

sector. Indeed, the presence of less supersymmetry preservation with respect to the DW

allows more freedom and, in contrast with the DW case, different metrics can correspond

to a single scalar profile.

Taking F = e0 and fixing all the integration constant (and functions) to a convenient

value, a simple solution is

ds2 =
2

3
gr

(

−2dx+dx− − 8g
√

re−2x+

(dx+)2 + dr2 + (dxi)2
)

, (4.16)

h =
3

2
ln[gr], (4.17)

e0 = e−x+

, (4.18)

with the other scalars identically zero. This solution exhibits a light-like singularity for

x+ → −∞.

4.2 A nV = 2 solution: the
SO(2,1)
SO(2) model.

We now consider the moduli space M = SO(1,nV )
SO(nV ) , nV > 1. We will use the parametrization

in [67]. We can then take the following polynomial

N(h) =
3

2

√

3

2

(√
2h0(h1)2 − h1

[
(h2)2 + . . . + (hnV )2

])

. (4.19)

This means that the non-vanishing components of the tensor CIJK are

C011 =

√
3

2
, C1ab = −

√
6

4
δab , a, b = 2, . . . , nV . (4.20)

The constraint N = 1 can be solved by

h0 =

√

2

3

(
1√

2(ϕ1)2
+

1√
2
ϕ1

[
(ϕ2)2 + . . . + (ϕnV )2

]
)

, (4.21)

h1 =

√

2

3
ϕ1, ha =

√

2

3
ϕ1ϕa. (4.22)

Applying the Very Special geometry identities (2.3), the metric gxy results diagonal in

this parametrization,

gxy = Diag

(
1

(φ1)2
,
(φ1)3

3
, . . . ,

(φ1)3

3

)

. (4.23)

– 19 –



J
H
E
P
0
2
(
2
0
0
7
)
0
7
8

Here we are interested in performing a U(1) gauging. The constraint (2.9) implies for the

constant P r
I , ~PI × ~PJ = 0, therefore the prepotential is P r = P r

I hI with P r
I = VIQ

r. It

follows W =
√

2
3VIh

I . In order to get an analytic solution we choose VI = V δ1
I . Explicitly

W =
2

3
V φ1. (4.24)

According to the orthogonality condition we can take

ux = fδx
2 . (4.25)

Due to the SO(nV ) symmetry of the moduli space, ux may always be cast in this form.

This means that, for the special gauging (4.24) we can restrict without loss of generality

to nV = 2. As in the previous section we start by analyzing the integrability conditions for

the scalars. The equation in the direction 1 gives

3D∂1W = −3f∂2∂
1W = 0, ⇒ D = 0, (4.26)

while the equation along the second component determines f

Wf = 3∂1W∂1f, ⇒ ∂1 ln f =
1

3φ1
. (4.27)

Again (4.26) entails β = β(φ1) = β(r) while from (4.27) follows

f = F (φ2)β−1 = (C)−1F (φ2)(φ1)
1/3

.

As in the hypermultiplet example F is completely arbitrary.

The profile of φ1(r) can be easily determined integrating (3.5):

φ1 =

[
4

3
gγCV r

]−3/2

, β = C
[
4

3
gγCV r

]1/2

. (4.28)

Accidentally the solution turns out to be practically identical to one obtained in the pre-

vious section.

5. Discussion

In this paper we analyzed null deformations of flat domain wall solutions (NDDW) in

gauged supergravity. In our study we used an approach mainly based on the choice of an

ansatz explicitly showing, however, that we covered all the solutions of the class we were

interested in. In this respect, we reviewed and further investigated the relation between the

projector (2.25) and flat domain wall solutions (DW) (for related discussions see e.g. [26,

68, 69]). This allowed us to identify the DW solutions as light-like in the classification

framework, and, more important, it allowed us to prove that all the possible deformations

of the DW have origin in the hypermultiplet sector or/and are null.

We showed that the null deformations can have a “gauging” (v-deformation) or a “non

gauging” (u-deformation) nature. This conceptual difference has practical consequences:

only the presence of a v-deformation can give rise to a time-dependent (super)potential.
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As the superpotential W controls the dependence of the scalars (and, via backreaction,

of the metric) on r, uΛ and v(Λ) determine the lightcone time dependence. However, in

comparison to W they do not have an intrinsic geometrical origin on the moduli space. v(Λ)

and uΛ (or better uΛuΛ) acquire a well-defined meaning once they satisfy the integrability

conditions of the scalars (SIC) as spacetime functions, ϕΛ = ϕΛ(r, x+).

The SIC play a crucial role in constructing solutions. We showed how they can be

solved, and two analytical solutions supported by scalars in the hypermultiplet and in the

vector sector respectively were found.

Our study also provided insights that seems to apply to generic BPS solutions in

gauged supergravity [52]. We note for the first time that the compatibility of gauging

imposes restrictions on the number of matter multiplets, even at the level of an abelian

gauged group. Indeed if we consider u-deformation, the resulting solution can be equiv-

alently considered as the outcome of the soft supersymmetry breaking produced by the

gauging on a (null) background of the ungauged theory (identified by uΛ). The resulting

condition for preserving supersymmetry, uΛDΛ
~P = uXKX = 0, forces the number of mat-

ter multiplets to be different by one, nH , nV 6= 1. While for vector multiplets (where there

is one scalar in each multiplet) such condition is meeting the naive expectation that for

each “active” spacetime direction there is at least one scalar flowing (an expectation that

can be made rigorous using the adapted coordinate of appendix D), this is far less obvious

in the hypermultiplet case (where there are four scalars in each multiplet) and completely

unexpected when both kinds are present. The above consideration reinforces the idea that

it is more “natural” to regard the scalars of a hypermultiplet as a unique quaternionic

scalar.

At the same time, this is an indication that an extension of the Fake supergravity

formalism may be possible, at least for u-deformed DW. Roughly speaking, one expects

that, in analogy with the DW, the supergravity can be effectively described by two scalars,

encoding respectively x+ and the r dependence. The second scalar should mimic only the

scalars (the multiplets) involved in the gauging. Such a splitting should also appear in the

fake BPS conditions. In support of this picture, we find that the democratic treatment

for the scalars, introduced in [26] and extended for curved domain walls in [28], perfectly

works also for NDDW.

Our results raise interesting questions that have only been considered briefly.

First of all, it would be very appealing to explore the holographic meaning of NDDW.

Assuming the validity of gauged/gravity correspondence (at least when the gravity back-

ground is asymptotically AdS), one would expects that, being the deformation of AdS5

associated to a DW and null deformation compatible at the supergravity level, the same

should happen for the corresponding deformations of N = 4 SYM. Would be very inter-

esting to check this explicitly at the gauge theory level.

The ultimate question that naturally arises is whether the flow in (the analogue of) the

radial coordinate still describes the RG flow in the dual field theory. In order to address this

problem, one should take the (N = 2 embedding of the) kinks that have dual known flow

and construct their null deformation. Constructing such solutions explicitly is certainly

not an easy task.
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More concretely, let us consider the FGPW flow. Its N = 2 embedding has been given

in [26] in terms of one vector multiplet, one hypermultiplet with a gauging of a U(1)×U(1)

symmetry of the scalar manifold. However, as commonly happens in presence of compact

gauging with both hypers and vectors coupled, the actual solution (out of the fixed points)

is known only numerically. This circumstance unfortunately makes it very difficult to solve

the SIC and to construct a consistent null deformation.

On other hand, it is relatively easy to construct NDDWs based on non compact gaug-

ing, as was shown in section 4 and it should be even possible to obtain their uplifting.

However, it is more difficult to find the holographic dual of such configurations because

they are deformations of DWs that are not asymptotically AdS.

A possible way of circumventing such difficulties could be achieved developing a gen-

eralized Fake formalism, on the lines discussed above. Furthermore, using the technique

presented in [70], one could obtained non supersymmetric but stable NDDW.

A related problem would be to consider null deformation of curved domain wall [71,

68, 69, 72, 73]. This extension can be done by simply generalizing the metric ansatz (3.2),

as our calculations are valid for a generic γ, with γ2 ≤ 1. This would make possible

to consider null deformation of solutions like “Janus” [74], which is conjectured to be

dual to an interface CFT [75]. The stability of this ten-dimensional Type 0 solution was

proven in [45] using Fake supergravity, while its embedding into N = 2, d = 5 gauged

supergravity has been derived in [76], following [28]. The supersymmetric Type II Janus

has been recently obtained in [77] and its holographic interpretation discussed in [78].

A completely different application of the NDDW would be in the study of possible

supersymmetric decay of domain walls. Very recently, in [79] it has been found that stable

domain walls can asymptote to unstable anti-de Sitter vacua. The authors conjectured

that these solutions decay via a time-dependent process to some near-by stable domain

wall. It would be interesting to see whether a NDDW might represent a possible decay

channel.

Finally, another point that deserves further attention is the existence of 1/8 BPS

deformations of DWs. The very recent result of [30] suggests that solutions preserving

only 1/8 of supersymmetry exist already in ungauged supergravity with hypermultiplet

couplings. In contrast, without hypermultiplet coupled the supersymmetric configuration

preserves at least two supercharges [62]. It is then reasonable to assume these deformations

should exist. Characterizing such configurations is interesting on its own right and could

help in the arduous task of classifying all the BPS solutions of N = 2 gauged supergravity

with hypermultiplets coupled.
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A. Metric and integrability conditions

Inspired by [1], we choose the following metric ansatz18 (in a conformal gauge):

ds2 = β2(x+, r)
(
−2k2(x+)dx+dx− + H(x+, x−, xi, r)(dx+)2 + dr2 + (dxi)2

)
, (A.1)

E± = βdx+, E∓ = β(k2dx− − 1/2Hdx+), Ei = βdxi, E5 = βdr. (A.2)

It follows

w±
± =

(
β′

β2
+

2kk′ + 1/2∂−H

βk2

)

E±, w±
r =

β̇

β2
E±, (A.3)

w∓
i = −1/2

∂iH

β
E± +

β′

β2
Ei, w∓

r = −1/2
Ḣ

β
E± +

β̇

β2
E∓ +

β′

β2
E5, (A.4)

wi
r =

β̇

β2
Ei, (A.5)

where we indicate the derivative with respect to the spacetime coordinates x+ and r with

a prime and a dot, respectively: β′ ≡ ∂x+β, β̇ ≡ ∂rβ. For the curvature we have

Ω±∓ =
E±

β2
∧

[(
∂2
−H

2k2
− (β̇/β)

)2

E∓ +
∂i∂−H

2k2
Ei +

(

β̇′β − 2β̇β′

β2
+

∂−Ḣ

2k2

)

E5

]

, (A.6)

Ω±i = −(β̇/β2)2E± ∧ Ei, Ω±r = − β̈β − 2β̇2

β4
E± ∧ E5, (A.7)

Ω∓i = 1/β2E± ∧
{

∂−∂iH

2k2
E∓ +

[(

β′′β − 2(β′)2

β2
− β′/β

2kk′ + 1/2∂−H

k2
+

β̇Ḣ

2β

)

δi
j

+ 1/2∂ijH]Ej + 1/2∂iḢE5
}

−
(

β̇

β2

)2

E∓ ∧ Ei − β̇′ − 2β′β̇

β4
Ei ∧ E5, (A.8)

Ω∓r = 1/β2E± ∧
[(

∂−Ḣ

2k2
+

β̇′ − 2β̇β′

β2

)

E∓+1/2∂iḢEi+

(

1/2Ḧ+
β̇Ḣ

2β
+

β′′β−2(β′)2

β2

− β′ 2kk′ + 1/2∂−H

k2

)

E5

]

− β̈β − (β̇)2

β4
E∓ ∧ E5, (A.9)

Ωir =
β̇′β − 2β̇β′

β4
E± ∧ Ei − β̈β − (β̇)2

β4
Ei ∧ E5, Ωij = −

(

β̇

β2

)2

Ei ∧ Ej . (A.10)

18With respect to [1] we define the lightcone coordinate differently, in order to have η±∓ = 1. The main

difference is that here the warp-factor β is a generic function of r and x+. The deformed AdS metric of [1]

is recovered for β = 1/r.
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In that following we will use the notation ã to indicate the flat indeces different than 0, 1

(±, ∓).

The functions in the ansatz will be determined by the comparison with the gravitini

integrality conditions (GIC) and the equations of motion for the metric. The formers

are established studying the consistency of (2.20) with the projectors (2.25) and (3.1).

Explicitly, from (3.4) it follows

DaP
r = ∂aϕ

ΛDΛP r =

=

√

3

2
g

[

3

(

v∂XW∂XW +w
1

γ2
∂xW∂xW

)

δ±a +3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

δ5
a

]

αr,

γ ≡ −αsQs, (A.11)

that implies

{

1/2Ωcd
ab + 6g2

[

v ∂XW∂XW + w
1

γ2
∂xW∂xW

]

δ±[cγd]γ5

− g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)
(
δ5
c + δ5

d

)
− W 2

]

γcd

}

εi = 0.(A.12)

The above equation fixes the curvature to be

Ω±∓ = −g2W 2E± ∧ E∓ − 3g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

E± ∧ E5, (A.13)

Ω±ã = g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

δ5
ã − W 2

]

E± ∧ Eã, (A.14)

Ω∓ã = Ω±b̃
∓ãE± ∧ E b̃ − 3g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

δã
5E± ∧ E∓

+g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

δ5
ã − W 2

]

E∓ ∧ Eã

+3g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

Eã ∧ E5, (A.15)

Ωãb̃ = g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)
(
δ5
ã + δb̃

)
− W 2

]

Eã ∧ E b̃

−6g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

δ
[ã
c̃ δ

b̃]
5 E± ∧ E c̃. (A.16)

However, the component of the curvature Ω±ã
∓b̃ remains unfixed by the BPS equations,

and it is determined only by the equations of motion. This is not surprising, corresponding

Ω±ã
∓b̃ to the light-like deformation. We would like to comment that, at this stage, the

integrability condition we computed applies to null-deformation of any domain wall, curved

or flat.

As a consequence of GIC, we get the following equation for the ansatz A.1. The

condition (A.13) gives

1

β2

(
∂2
−H

k2
−

(
β̇

β

)2)

= −g2W 2, (A.17)
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together with

∂i∂−H = 0, (A.18)

β̇′ − 2β̇β′

β2
+

∂−Ḣ

k2
= −3g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

. (A.19)

The condition (A.14) provides

−




β̈β − β̇2

β4
δ5
ã +

(

β̇

β2

)2


 = g2

[

3

(

∂XW∂XW +
1

γ2
∂xW∂xW

)

δ5
ã − W 2

]

, (A.20)

that together with (A.17) and Ẇ =
√

3
2Qsϕ̇ΛDΛP s = −3gγβ

(

∂XW∂XW + 1
γ2 ∂xW∂xW

)

implies
β̇

β2
= gγW, γ2 = 1, (A.21)

and

∂2
−H = 0. (A.22)

In comparison with the DW case, we observe how the radial dependence of the warp-

factor is still controlled by the superpotential, with the difference that now W can be

also a function of x+. As well, the relation γ2 = 1 indicating the “flatness” of the wall is

maintained: actually this is an input we put in (A.1), focusing as announced on deformation

of the (flat) DW metric (2.38). The condition (A.15) brings to

β̇′ − 2β̇β′

β2
= −3g2

(

v ∂XW∂XW + w
1

γ2
∂xW∂xW

)

, (A.23)

∂−Ḣ = 0. (A.24)

The condition (A.16) does not furnish any new relation. The independent equations for the

ansatz are summarized in the main text, eq. (3.5), (3.7). The additional equation necessary

to determine H in terms of the geometric quantities W , v, w and uΛ will come from the

equations of motion, eq. (B.6).

The last integrability condition to be considered comes from the scalar fields. Indeed,

being now functions of r and x+, is necessary to check that ∂[r∂x+]ϕ
Λ = 0. The explicit

expression is given in section 3, eq. (3.11).

B. Equations of motion

The equations of motion of the lagrangian (2.11) (taking in account also the terms con-

taining the gauge field that are zero for the configurations we study) for the metric, the

gauge field and the scalars are, respectively

−Rµν + aIJF I
µaF

Ja
ν + gXY DµqXDνqY + gxyDµφxDνφ

y − 1

6
|F |2gµν +

2

3
g2Vgµν = 0, (B.1)

∇a(aIKFKae) +
1

2
√

6
CIJKεabcdeF J

abF
K
cd − gKX

I DeqY gXY = 0, (B.2)
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D̂µ(DµqW ) + gAµIDµKW
I = g2gWX∂XV, (B.3)

D̂µ(Dµφx) + gAµIDµKx
I = g2gxy∂yV +

1

4
gxy∂yaIJF I

µνF Jµν , (B.4)

where D̂ is a totally covariant derivative, ie with respect to all the indices, explicitly

D̂µDµϕΛ = ∇µDµϕΛ + ΓΛ
ΣΘDµϕΣDµϕΘ.

Specializing them to our uncharged configurations we get for the metric (we use the

unifying notation for the scalars)

Rab = gΛΣ∂aϕ
Λ∂bϕ

Σ +
2

3
g2Vηab. (B.5)

This identity can be easily checked for the component of the Ricci tensor following by the

integrability condition (A.12) and the correspondent BPS values of the kinetic term of the

scalars (3.10) and of the potential (2.19). Such result can be obtained applying the general

result of [32]. The (±,±)- component gives instead a new equation:

R±± = −9g2
(
v ∂XW∂XW + w ∂xW∂xW

)
− uΛuΛ. (B.6)

Making the comparison with the metric ansatz (A.1) one finds the constraint (3.9).

Although we are considering uncharged configuration (B.2) is not trivial. Indeed it

entails KX∂µqY gXY = 0. The main consequence of such condition is that the Hyperini

equation becomes of the same form of the gaugini equation. This fact may be seen as the

deepest reason why the democratic treatment of the scalars applies in the contest of DW

solutions.

Regarding the e.o.m for the scalars, we observe that it reduces to the equation for the

DW. Explicitly, we have

∇µ(∂µϕΛ) + ΓΛ
ΩΣ∂µϕΩ∂µϕΣ = g2∂ΛV, (B.7)

where the first term on the l.h.s. can be written as ∇µ(∂µϕΛ) = ∂µ∂µϕΛ+(∂µ ln
√−g)∂µϕΛ.

It is immediate to verify that only the term with µ = r survives because NDDWs are cyclic

in x− and gµν is off-diagonal in x+. Hence, (B.7) reduces to scalar e.o.m. of the DW and

the same manipulations hold, as the relation between ∂rϕ
Λ, β and W is unchanged in the

deformed case.

C. Parametrization of the two-dimensional projective quaternionic space

We shall consider the quaternionic-Kähler manifold of quaternionic dimension 2:

Sp(2, 1)

Sp(2) × Sp(1)
' USp(4, 2)

USp(4) × USp(2)
. (C.1)

The algebra of the isometry group, sp(2, 1) can be defined as the set of matrices over the

quaternions H that preserve a metric of signature (+,+,−). We take this metric in the

form

µ =






1

1

1




 , (C.2)
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where each entry is a quaternion, or 2× 2 complex matrix. The elements M of sp(2, 1) are

those 3 × 3 matrices with entries in H that satisfy

µM †µ = −M. (C.3)

The general form of an element of sp(2, 1) is then

M =







a 1
2(ē + f̄) −1

2(~b + ~c)
1
2(e − f) ~p −1

2(e + f)

1
2(~b − ~c) 1

2(f̄ − ē) −ā







, (C.4)

where a = a0 + ~a, e = e0 + ~e and f = f0 + ~f are generic quaternions and ~c, ~b and ~p are

pure anti-Hermitian quaternions (with vanishing Hermitian part).19

The Lie algebra of sp(2, 1) can be split into a compact (anti-Hermitian) and non-

compact (Hermitian) part :

MH =






~a 1
2 f̄ −1

2~c

−1
2f ~p −1

2f

−1
2~c

1
2 f̄ ~a




 , MG/H =






a0
1
2 ē −1

2
~b

1
2e 0 −1

2e
1
2
~b −1

2 ē −a0




 . (C.5)

The H part of the generator can be decomposed into its subalgebras:20

Msu(2) =






~u 0 −~u

0 0 0

−~u 0 ~u




 , Msp(2) =






~v 1
2 f̄ ~v

−1
2f ~p −1

2f

~v 1
2 f̄ ~v




 . (C.6)

Msp(1) commutes with Msp(2) and the latter contains two commuting su(2) parameterized

by ~p and ~v:

Msu(2)⊕su(2)⊂sp(2) =






~v 0 ~v

0 ~p 0

~v 0 ~v




 . (C.7)

We see that the compact subalgebra of sp(2, 1) contains three commuting su(2). Msu(2) ⊂
sp(1) corresponds to the R-symmetry whereas the su(2)~p ⊂ sp(2) contains the compact

U(1) for the string.

The solvable gauge of the coset manifold is obtained by adding to MG/H an element

of MH (with ~c = ~b, f = e and ~a = ~p = 0) so that the result is an upper triangular matrix:

MSolvable =






a0 ē −~b

0 0 −e

0 0 −a0




 . (C.8)

19The identification sp(2, 1) ' usp(4, 2) is obtained once we take the matrices −i~σ for the imaginary

quaternions.
20It is related to the previous expression of MH by taking ~u = 1

2
~a + 1

4
~c and ~v = 1

2
~a − 1

4
~c.
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C.1 Solvable coordinates and metric of
Sp(2,1)

Sp(2) Sp(1)

We parametrize the coset elements by

L = eN · eH , (C.9)

where

N = Ne + Nb =






0 ē 0

0 0 −e

0 0 0






︸ ︷︷ ︸

Ne

+






0 0 −~b

0 0 0

0 0 0






︸ ︷︷ ︸

Nb

, H =
1

2






h 0 0

0 0 0

0 0 −h




 . (C.10)

The coordinates qX are thus the real h, the 3 real coordinates of ~b and the 4 real parts of

the quaternion e. This leads to

L =






e
1

2
h ē −e−

1

2
h(~b + ēe

2 )

0 −e−
1

2
he

0 0 e−
1

2
h




 . (C.11)

This leads to the algebra element

L−1dL =






B0

2
Ē√
2

− ~B

0 0 − E√
2

0 0 −B0

2




 , (C.12)

where

B = B0 + ~B = dh + e−h
[

d~b − 1
2(ēde − dēe)

]

, E =
√

2 e−
1

2
hde, (C.13)

or in real components

B0 = dh, Br = e−h
(
dbr + erde0 − e0der − εrstesdet

)
. (C.14)

The algebra element can be split in the coset part and the part in H. The first one is the

Hermitian part:

(L−1dL)G/H =
1

2







B0
Ē√
2

− ~B
E√
2

0 − E√
2

~B − Ē√
2
−B0.







. (C.15)

The part in H is the anti-Hermitian part, which can be split in the sp(1) and sp(2) part:

(L−1dL)H =
1

2







0 Ē√
2

− ~B

− E√
2

0 − E√
2

− ~B Ē√
2

0







= (L−1dL)sp(1) + (L−1dL)sp(2),

(L−1dL)sp(1) =
1

4






~B 0 − ~B

0 0 0

− ~B 0 ~B




 ,

(L−1dL)sp(2) =







−1
4
~B Ē√

2
−1

4
~B

− E√
2

0 − E√
2

−1
4
~B Ē√

2
−1

4
~B







. (C.16)
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The metric is defined as

ds2 = gXY dqXdqY = Tr
[
(L−1dL)G/H · (L−1dL)G/H

]
= 1

2 tr(BB̄ + EĒ), (C.17)

where Tr stands for a trace over the 6 × 6 matrix and tr for a trace over the 2 × 2 matrix.

We will comment on the normalization of this metric below. Its value is

ds2 = (dh)2 + (B1)2 + (B2)2 + (B3)2 + 2e−h
[
(de0)2 + (de1)2 + (de2)2 + (de3)2

]
. (C.18)

The vielbeins, as 1-forms and quaternions as explained above, can be taken to be

f1 =
1√
2
B, f2 =

1√
2
E. (C.19)

These lead to (C.17) and to the hypercomplex form (∧ symbols understood)

~J = −1
2

(
B̄ B + Ē E

)
, or Jr = −B0B

r − E0E
r − 1

2εrst
(
BsBt + EsEt

)
. (C.20)

Using the differentials

dB = −B0B − 1
2Ē E, dE = −1

2B0E,

or dBr = −B0B
r − E0E

r − 1
2εrstEsEt, (C.21)

we obtain

dJr + 2εrstωsJ t = 0, (C.22)

for

ωr = −1
2Br. (C.23)

We find then that (2.8) is satisfied for ν = −1. The value that we get here for ν depends

on the normalization of the metric. Multiplying the metric by an arbitrary −ν−1, would

lead to (2.8) with this arbitrary value of ν. In the supergravity context, ν = −κ2, where κ

is the gravitational coupling constant, which we have put equal to 1.

D. Adapted coordinates

In this section we present some insights on the SIC and the possible solutions it admits.

The crucial ingredient is the adoption of adapted coordinates, associated to an existing

solution. This choice allows to emphasize the physics of the solution, that is characterized

by two dynamical scalars. As a result, the properties of the possible solutions can be better

understood, even without constructing them explicitly. However, one has to have clear the

price paid assuming a priori the existence of a solution. We will further comment on this

point.

Generalizing the argument in [28], the metric of the moduli space on the two-

dimensional sub-manifold identified by a solution can be cast as

gΛΣ|sol =






g11 g12 0

g12 g22 0

0 0 gΛ̂Σ̂




 , (D.1)
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where ϕ1 and ϕ2 represent the dynamical scalars while the others are constant. In this

optic the meaning of the SIC is more clear. The different solutions for a given W coincides

with the possible embedding of a two-dimensional submanifolds Isol admitting a metric of

the form (D.1).

To be concrete, let us study this problem in presence of u-deformation only. In this

special case, as observed in section 3.2, the r and x+ dependence “decouple”, being W =

W (r) and D = D(x+). This further simplifies our problem. W = W (r) implies the

existence of a preferred coordinate system in which ϕ1 = W . This parametrization is well-

defined until we are out of the critical points of superpotential, i.e. ∂ΛW 6= 0. The clear

advantage of this coordinate choice is that uΛ lies in the direction 2 and ϕ1 depends only

on r, u1 = (ϕ1)′ = 0. Because of this (3.11) gives

Dg11 = −u2∂2(g
11), (D.2)

Dg12 +
1

3
ϕ1u2 = (g11∂1 + g12∂2)u

2 − u2∂2g
12. (D.3)

These equations can be formally integrated in terms of ϕ1 and ϕ2 taking in account that

(ϕ1)′ = 0 together with (D.2) implies

D

u2
= ∂2 ln β = −∂2 ln g11. (D.4)

This leads to a warp-factor of the form β = F (ϕ1)
g11 ; the function F can be computed

using (D.2) or equivalently (3.5). The resulting β(ϕ1, ϕ2) is

β = e
− 1

3

»

R

„

g12∂2( 1

g11 )− ϕ1

g11

«

dϕ1

–

. (D.5)

Equivalently, a formal expression for u2 can be obtained from (D.3) solving

(g11∂1 + g12∂12) ln u2 = ∂2g
12 − g12∂2 ln g11 + ϕ1. (D.6)

As in the explicit example of section 4 uΛ is not completely determined as a function of

the moduli space. In terms of the previous equations, the spacetime parametrization of

the scalars is

ϕ̇1 = −3gγβg11 = −3gγF (ϕ1), (D.7)

ϕ̇2 = −3gγβg12 = −3gγ
g12

g11
F (ϕ1), (D.8)

ϕ2′ = βu2 =
u2

g11
F (ϕ1). (D.9)

The above equations deserve some comments. As we stress at the beginning they can

be interpret only as a formal solution. Indeed, we start assuming that the solution exists:

this implies that the coefficients of the effective two dimensional metric are non generic,

in order to guarantee the existence of the solution. This can be understood considering

F (ϕ1): ∂2F = 0 ends up in an integrability condition on the such coefficients. Hence the

integrability requirements of SIC are just rewritten in a different way.
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Keeping in mind this caveat, the adapted coordinates are still an useful tool. For

example, they make clear that we may have a solution with non trivial D even if the

two dimensional metric is diagonal, i.e. g12 = 0. As (D.4) shows, the crucial condition is

∂2g
11 6= 0. Unfortunately, this does not occur for the examples considered in section 4.
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